Wednesday, November 27, 2019
Lab report toothpickase Essays
Lab report toothpickase Essays Lab report toothpickase Paper Lab report toothpickase Paper As time went on and towards the end of the two minutes the rate started to stay the same. The trend between the Control and the Trail 2- Enzyme Mutation (Tied Fingers) graph is that Trail 2 produced fewer reactions, averaging at 1 toothpick per 10 second, in the same amount of time. This is because the enzymes index and middle finger were taped together, preventing it to conduct efficient work. The trend between the Control and the Trail 3- Enzyme Mutation (Breaking two at a time) graph is that the line displayed an initial increase, then a gradual decline. Finally, the rate increased once again and hen started to stabilize. This applies to the graph of Trail 3 where the enzyme broke two toothpicks at a time to increase the substrate. SOURCES OF ERROR Possible Errors The toothpicks used were not all the same. The toothpicks that were broken may not all of been completely broken in half. The enzyme may have looked during the breaking of the toothpicks. The recorder or counter may have made a mistake while counting the toothpicks. Influence of Error A particular brand of toothpicks may have been stronger than others, which would slow the reaction rate because more force would have to be exerted urine the reaction. The toothpicks that arent broken completely in half do not count as a reaction therefore they could not influence the reaction rate. If the enzyme looks while conducting the reaction then it doesnt count towards the reaction rate and then decreasing it. If a reaction was accidentally over looked that couldve increased or decreased the reaction rate, then the data is inaccurate Control of Error The brand could have been controlled by keeping all of the same toothpicks together and only using those. The clean break of toothpicks could have been enthroned by the enzyme making sure that the break was complete by feeling the substrate. The error of looking could have been prevented by blind folding the enzyme. The error of inaccurate counting could have been prevented by doing more trails. This wouldnt prevent the mistake since it is human error but, it could validate accuracy. CONCLUSION The hypothesis for Trial 2 was if the enzyme has a weakening mutation then the reaction rate will be slower compared to the Control Trials. The hypothesis was supported because based off of the data and trends of the graph the reaction ate averaged at 1 toothpick per 10 seconds while the Control Trials reaction rate averaged at 2. 5 toothpicks every 10 seconds. This decrease in reaction rate is due to the mutation of taping the enzymes index finger and thumb together. As shown in the Reaction Rate vs Time graph, you may notice a decrease in the reaction rate over 120 seconds by the green line. The decrease in reaction rate between the control and this case of a mutated enzyme that is shown can be attributed to the hindering mutati on of the dominant hand. Since taping the index finger and thumb together was the only thing changed this mutation was expansible for the decrease in reaction rate. This can relate to the present world because scientific studies have shown that some mutated enzymes will have fewer reactions with the substrates therefore they decrease the reaction rate. The hypothesis for Trial 3 is if the enzyme has a strengthening mutation then the reaction rate will be quicker compared to the Control Trial. This hypothesis was refuted because due to the evidence presented in the data graphs and tables, the reaction rate averages at about one broken toothpick every 10 seconds while the Control averaged at about 2. Toothpicks every 10 seconds. The initial increase and the gradual decline of the reaction rate can be attributed to the mutation of the enzyme breaking two toothpicks at a time. Referencing the orange line on the Reaction Rate vs Time graph there was an overall decrease in the reaction rate compared to the Control Trials, the purple line. This decrease in reaction rate between the mutated abilities of the enzyme and the control indicates that by incre asing the amount of toothpicks the enzyme could break even caused a decrease in the reaction rate. Since breaking two toothpicks at a mime was the only thing changed this mutation was responsible for the decrease in reaction rate. I can relate this to real life situations because if more used products are in the way of the new substrates then it will be hard to identify which one can be used. After completing this experiment I am led to conclude that the reaction rate of an enzyme will fluctuate between high and low amounts of reactions but it will ultimately decrease as the substrates become harder to find. INTRODUCTION The problem during this experiment was needing a physical representation of enzyme action. In order to do this we simulated enzyme reactions through breaking toothpicks. In the experiment one person is the enzyme and will be breaking the toothpicks. The other members of the group will be writing down the quantitative results, timing the reactions, or counting the reactions. After that you will find the reaction rate of each trial. At least two trials need to have been changed in a way that would alter your results. You can compare your results using a line graph. There you will be able to see how each reaction rate is different. Finally you can conclude why. An enzyme is a catalyst therefore it can decrease the activation energy that is needed to start a chemical reaction but still increase the rate of the chemical reaction. Enzymes exist in living things and are found as proteins in cells. A substrate is a specific reactant that an enzyme acts on. Each enzyme has a specific substrate that it will only act on. The different conditions that an enzyme is exposed to, whether it be temperature, mutation, or increased substrates, will affect the reaction that an enzyme has. Catalysts are needed to speed up the process of essential chemical reactions that occur at an organisms body temperature. When substrates bind to an enzyme the chemical bonds start to grow weaker resulting in the need for less activation energy in order to break the bonds. In this experiment there were many roles. One person of a group acts as an enzyme for the whole experiment. Specifically, their index finger and thumb on their dominant hand is the enzyme. The toothpicks are the substrate. The active site, where the substrate and enzyme fit together, is in between your finger and thumb.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.